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Abstract

We introduce The Boombox, a container that uses acous-
tic vibrations to reconstruct an image of its inside contents.
When an object interacts with the container, they produce
small acoustic vibrations. The exact vibration characteris-
tics depend on the physical properties of the box and the
object. We demonstrate how to use this incidental signal
in order to predict visual structure. After learning, our ap-
proach remains effective even when a camera cannot view
inside the box. Although we use low-cost and low-power
contact microphones to detect the vibrations, our results
show that learning from multi-modal data enables us to
transform cheap acoustic sensors into rich visual sensors.
Due to the ubiquity of containers, we believe integrating
perception capabilities into them will enable new applica-
tions in human-computer interaction and robotics.

1. Introduction
Reconstructing the occluded contents of containers is a

fundamental computer vision task that underlies a number
of applications in assistive technology and robotics [7, 38].
However, despite their ubiquity in natural scenes and the
ease at which people understand containment [16, 1], con-
tainers have remained a key challenge in machine percep-
tion [13, 9]. For any camera based task, once an object is
contained, there are very few visual signals to reveal the lo-
cation and appearance of occluded objects.

Recently, the computer vision field has explored sev-
eral alternative modalities for learning to reconstruct ob-
jects occluded by containment. For example, non-line-of-
sight imaging systems use the reflections of a laser to sense
around corners [6, 11], and radio frequency based sensing
shows strong results at visual reconstruction behind walls
and other obstructions [41]. These methods leverage the
ability to actively emit light or radio frequencies that reflect
off surfaces of interest and return to the receiver. These ap-
proaches typically require active emission for accurate vi-
sual reconstruction.

In this paper, we demonstrate how to use another modal-
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Figure 1. The Boombox: We introduce a “smart” container that
is able to reconstruct an image of its inside contents. Our ap-
proach works even when the camera cannot see into the container.
The box is equipped with four contact microphones on each face.
When objects interact with the box, they cause incidental acous-
tic vibrations. From just these vibrations, we learn to predict the
visual scene inside the box.

ity for reconstructing the visual structure inside containers.
Whenever an object or person interacts with a container,
they will create an acoustic vibration. The exact incidental
vibration produced will depend on the physical properties
of the box and its contained objects, such as their relative
position, materials, shape, and force. Unlike an active ra-
dio, these vibrations are passively and naturally available.

We introduce The Boombox, a smart container that uses
the vibration of itself to reconstruct an image of its contents.
The box is no larger than a cubic square foot, and it is able
to perform all the rudimentary functions that ordinary con-
tainers do. Unlike most containers, however, the box uses
contact microphones to detect its own vibration. Capital-
izing on the link between acoustic and visual structure, we
show that a convolutional network can use these vibrations
to predict the visual scene inside the container, even under
total occlusion and poor illumination. Figure 1 illustrates
our box and one reconstruction from the vibration.

Acoustic signals contain extensive information about the
surroundings. Humans, for example, use the difference in
time and amplitude between both ears to locate sounds and
reconstruct shapes [35]. Theoretical results also suggest
that, with some assumptions, the geometry of a scene can
be reconstructed from audio [14]. However, there are two
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Figure 2. The Boombox Overview. (A) The Boombox can sense the object through four contact microphones on each side of a storage
container. A top-down RGB-D camera is used to collect the final stabilized scene after the object movements. (B) We drop three wooden
objects with different shapes. (C) Input and output data visualizations.

key challenges. Firstly, in our setting, the speed of sound is
extremely fast for the distance it will travel. Secondly, these
methods often assume stationary sound sources, and when
they do not, they require high speeds to detect Doppler ef-
fects. At the scale of a small box, standard radiolocation
methods are not robust because they are sensitive to slight
errors in the estimated signal characteristics.

We find that convolutional networks are able to learn
robust features that permit reconstruction that is accu-
rate within centimeters. Our experiments demonstrate that
acoustics are pivotal for revealing the visual structure be-
hind containment. Given just four microphones attached to
each face of the container, we can learn to create an image
that predicts both the position and shape of objects inside
the box from vibration alone. Our approach works on real,
natural audio. Although we use low-cost and low-power mi-
crophones, learning from visual synchronization enables us
to transform cheap acoustic sensors into 3D visual sensors.

The main contribution of this paper is an integrated hard-
ware and software platform for using acoustic vibrations to
reconstruct the visual structure inside containers. The re-
mainder of this paper will describe The Boombox in detail.
In section 2, we first review background on this topic. In
section 3, we introduce our perception hardware, and in sec-
tion 4, we describe our learning model. Finally, in section 5,
we quantitatively and qualitatively analyze the performance
and capabilities of our approach. We will open-source all
hardware designs, software, models, and data.

2. Related Work
Audio Analysis. The primary features in audio that are

used for sound localization [29] are time difference of ar-
rival and level (amplitude) difference. Specifically calcu-

lating these exact features is non-trivial, especially in sit-
uations where the signal is not broad-band and in motion
[24, 45, 2, 5]. Furthermore, these rough approximations
can only be used to localize the object, whereas our goal is
to not only localize objects, but also predict the 3D struc-
ture, which includes shape and orientation of the object as
well as the environment. As such, we develop a model that
learns the necessary features for reconstruction.

Vision and Sound. In recent years the field has seen
a growing interest in using sound and vision conjunctively.
There are works that, given vision, enhance sounds [30, 18],
fill in missing sounds [42], and generate sounds entirely
from video [32, 43]. Further, there have been recent works
in integrating vision and sound to improve recognition of
environmental properties [3, 21, 8] and object properties,
such as geometry and materials [40, 39]. Lastly, there
have been works in using audiovisual data for representa-
tion learning [33, 4, 28]. [17] investigates vision and sound
in a robot setting where they predict which robot actions
caused a sound. There has been work for generating a face
given a voice [31] and a scene from ambient sound [37].
In contrast, our work uses sound to predict the 3D visual
structure inside a container.

Non-line-of-sight Imaging: Due to the importance of
sensing through occlusions and containers, the field has in-
vestigated other modalities for visual reconstruction. In
non-line-of-sight imaging, there has been extensive work
in scene reconstruction by relying on a laser to reflect off
surfaces and return to the receiver [6, 11]. There are also
audio extensions [25] as well as radio-frequency based ap-
proaches [41]. However, these approaches use specialized
and often expensive hardware for the best results. Our ap-
proach only uses commodity hardware costing less than $15



Figure 3. Chaotic Trajectories: We show examples of objects
trajectories as they bounce around the box until becoming sta-
ble. The trajectories are chaotic and sensitive to their initial condi-
tions, making them difficult to visually predict. The moving sound
source and multiple bounces also create potentially interfering vi-
brations, complicating the real-world audio signal.

at the time of writing. Due to this low-cost, a key advantage
of our approach is that it is durable, adaptable and straight-
forward, which makes it easy for others to build on.

3. The Boombox
In this section, we present the The Boombox and discuss

the characteristics of the acoustic signals captured by it.

3.1. Detecting Vibrations

The Boombox, shown in Figure 2A, is a plastic storage
container that is 15.5cm × 26cm × 13cm (width × length
× height) with an open top. The box is a standard object
that one can buy at any local hardware store.

When an object collides with the box, a small acoustic
vibration will be produced in both the air and the solid box
itself. In order for the box to detect its own vibration, we
have attached contact microphones on each wall of the plas-
tic cuboid storage bin. Unlike air microphones, contact mi-
crophones are insensitive to the vibrations in the air (which
human ears hear as sound). Instead, they detect the vibra-
tion of solid objects.

The microphones are attached on the outer side of the
walls, resulting in four audio channels. We arrange the mi-
crophones roughly at the horizontal center of each wall and
close to the bottom. As our approach will not require cali-
bration, the microphone displacements can be approximate.
We used TraderPlus piezo contact microphones, which are
very affordable (no more than $5 each).1

3.2. Vibration Characteristics

When objects collide with the box, the contact micro-
phones will capture the resulting acoustic vibrations. Fig-
ure 4 shows an example of the vibration captured from two
of the microphones. We aim to recover the visual structure
from this signal. As these vibrations are independent of the

1We found that these microphones gave sufficiently clear signals while
being more affordable than available directional microphone arrays. Each
microphone was connected to a laptop through audio jack to USB con-
verter. We use GarageBand software to record all four microphones to-
gether to synchronize the recordings.
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Figure 4. Vibration Characteristics: We visualize a vibration
captured by two microphones in the box. There are several dis-
tinctive characteristics that need to be combined over time in order
to accurately reconstruct an image with the right position, orienta-
tion, and shape of objects.

visual conditions, they allow perception despite occlusion
and poor illumination.

There is rich structure in the raw acoustic signal. For
example, the human auditory system uses inter-aural tim-
ing difference (ITD), which is the time difference of arrival
between both ears, and inter-aural level difference (ILD),
which is the amplitude level difference between both ears,
to locate sound sources [35].

However, in our settings, extracting these characteristics
is challenging. In practice, objects will bounce around in the
container before arriving at their stable position, as shown
in Figure 3. Each bounce will produce another, potentially
interfering vibration. In our attempts to analytically use this
signal, we found that the third bounce has the best signal for
the time difference of arrival, but as can be seen from Figure
4, even on the third bounce the time difference of arrival is
unclear in the actual waveform.

There are a multitude of factors that make analytical ap-
proaches not robust to our real-world signals. Firstly, we
are working with a moving signal, whereas time difference
of arrival calculations work best on stationary signals due to
the fact that it compares the time taken for a signal to travel
from a fixed location. This makes it very difficult to analyt-
ically segment the signal into chunks of roughly the same
location. Secondly, there are echos that make non-learning
based methods difficult to identify phase shifts as the en-
vironment is a small container. Finally, the fact that the
microphones are close together means that the time differ-
ence of arrival is encompassed in few samples, thus making
it susceptible to noise.

Instead of hand crafting these features, our model will
learn to identify the fraction of the signal that is most robust
for final localization. Moreover, our model will learn to
identify the useful features from the signals to reconstruct
a rich 3D scene that includes the shape, orientation, and
position of the contents.

3.3. Multimodal Training Dataset

Our approach will use the visual modality in order to
learn the robust characteristic features of the acoustic sig-
nal. By simply dropping objects into the box and captur-
ing resulting images and vibrations, we can collect a mul-
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Figure 5. Point Cloud Reconstruction from Vibration: We visu-
alize the point clouds produced by our method. These point clouds
are predicted only given the acoustic vibration of the box. For each
prediction, we show two different camera views.

timodal training dataset. We position an Intel RealSense
D435i camera that looks inside the bin to capture both RGB
and depth images.2

We use three wooden blocks with different shapes to cre-
ate our dataset. The blocks have the same color and mate-
rials, and we show these objects in Figure 2B. We hold the
object above the bin, and freely drop it.3 After dropping,
the objects bounce around in the box a few times before
settling into a resting position. We record the full process
from all the microphones and the top-down camera. Over-
all, our collection process results diverse falling trajectories
across all shapes with a total of 1,575 sequences. Figure 2C
shows an overview of the dataset.

We only use the camera to collect data for learning. After
learning, our approach will be able to reconstruct the 3D
visual scene from the box’s vibration alone.

4. Predicting Images from Vibration
In order to create robust features, we will learn them

from multi-modal data. We present a convolutional network
that translates vibrations into an image.

4.1. Model

We will fit a model that reconstructs the visual contents
from the vibrations. Let Ai be a spectrogram of the vibra-
tion captured by microphone i such that i ∈ {1, 2, 3, 4}.
Our model will predict the image X̂RGB = fRGB(A; θ)
where f is a neural network parameterized by θ. The net-
work will learn to predict the image of a top-down view
into the container. We additionally have a corresponding
network to produce a depth image X̂depth = fdepth(A; θ).

2The camera is 42cm away from the bottom of the bin to capture clear
top-down images.

3As the dynamics depend on the material properties, we wore a pow-
der free disposable glove while holding the object to avoid changing the
humidity on the object surface.

Reconstructing a pixel requires the model to have access
to the full spectrogram. However, we also want to take ad-
vantage of the spatio-temporal structure of the signal. We
thereforefore use a fully convolutional encoder and decoder
architecture. The network transforms a spectrogram repre-
sentation (time × frequency) into a C dimensional embed-
ding such that the receptive field of every dimension reaches
every magnitude in the input and every pixel in the output.
Unlike image-to-image translation problems [44, 20, 12],
our task requires translation across modalities.

We use a multi-scale decoder network [27, 19, 10].
Specifically, each decoder layer consists of two branches.
One branch is a transposed convolutional layer to up-sample
the intermediate feature. The other branch passes the in-
put feature first to a convolutional layer and then a trans-
posed convolution so that the output for the second branch
matches the size of the first branch. We then concatenate
the output from these two branches along the feature di-
mension as the input feature for the next decoder layer. We
perform the same operation for each decoder layer except
the last layer where only one transposed convolution layer
is needed to predict the final output image.

We use a spectrogram as the representation of audio sig-
nals. We apply a Fourier Transform before converting the
generated spectrogram to Mel scale. Since we have four
microphones, audio clips are concatenated together along
a third dimension in addition to the original time and fre-
quency dimension.

4.2. Learning

In practical applications, we often care about the resting
position of the object so that we can localize the object. We
therefore train the network f to predict the final stable im-
age. For RGB image predictions, we train the network to
minimize the expected mean squared error:

LRGB = EA,X

[
‖fRGB(A; θ)−XRGB‖22

]
(1)

In order to reconstruct shape, we also train the network
to predict a depth image from the acoustic vibration input.
We train the model to minimize the expected L1 distance:

Ldepth = EA,X [‖fdepth(A;φ)−Xdepth‖1] (2)

Since ground truth depth often has outliers and substantial
noise, we use an L1 loss [26]. We use stochastic gradient
descent to estimate the network parameters θ and φ.

After learning, we can obtain predictions for both the
RGB image and the depth image from the acoustic vibra-
tions alone. The visual modality is only supervising repre-
sentations for the audio modality, allowing reconstructions
when cameras are not viable, such during occlusions or low
illumination.
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Figure 6. Single-shape Training Results. We show the performance of each individual model trained with one of the three objects. We
report both the mean and the standard error of the mean from three random seeds. Our approach enables robust features to be learned to
predict the location and shape of the dropped objects.
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Figure 7. Multi-shape Training Results. By mixing all the train-
ing data together with all the shapes, our model still outperforms
all the baseline methods.

4.3. Implementation Details

Our network takes in the input size of 128 × 128 × 4
where the last dimension denotes the number of micro-
phones. The output is a 128 × 128 × 3 RGB image or a
128×128×1 depth image. We use the same network archi-
tecture for both the RGB and depth output representations
except the feature dimension in the last layer for different
modalities. All network details are listed in the Appendix.

Our networks are configured in PyTorch [34] and
PyTorch-Lightning [15]. We optimized all the networks for
500 epochs with Adam [22] optimizer and batch size of 32
on a single NVIDIA RTX 2080 Ti GPU. The learning rates
starts from 0.001 and decrease by 50% at epoch 20, 50, and
100.

5. Experiments
In our experiments, we test the capability of The Boom-

box to reconstruct an image of its contents from audio in-
puts. We quantitatively evaluate the model performance.
We then show qualitative results for our visual reconstruc-
tions. Finally, we show visualizations to analyze the learned
representations.

5.1. Dataset

We partition the dataset into a training set (80%), a val-
idation set (10%), and a testing set (10%). We train the

neural networks on the training set, and optimize hyper-
parameters on the validation set. We report results only on
the testing set. All of our results are evaluated on three ran-
dom seeds for training and evaluation. For each random
seed, we also vary the splits of the dataset. We report the
mean and the standard error of the mean for all outcomes.

5.2. Evaluation Metrics

Direct measurements in the pixel space is not informa-
tive because it is not a perceptual metric. We use two eval-
uation metrics for our final scene reconstruction that focus
on the object state.

IoU measures how well the model reconstructs both
shape and location. Since the model predicts an image, we
subtract the background to convert the predicted image into
a segmentation mask. Similarly, we performed the same
operation on the ground-truth image. IoU metric then com-
putes intersection over union with the two binary masks.

Localization score evaluates whether the model pro-
duces an image with the block in the right spatial position.
With the binary masks obtained in the above process, we
can fit a bounding box with minimum area around the ob-
ject region. We denote the distance between the center of
the predicted bounding box and the center of the ground-
truth bounding box as d, and the length of the diagonal
line of ground-truth box as l. We report the fraction of
times the predicted location is less than half the diagonal:
1
N

∑N
i=1[di ≤ l/2].

5.3. Baselines

Time Difference of Arrival (TDoA): We compare
against an analytical prediction of the location. In sig-
nal processing, the standard practice is to localize sound
sources by estimating the time difference of arrival across
an array of microphones. In our case, the microphones
surround the sound source. There are several ways to es-
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Figure 9. Performance before and after multi-shape training.
Multi-shape training enables shape knowledge transfer to improve
the overall performance

timate the time difference of arrival, and we use the Gen-
eralized Cross Correlation with Phase Transform (GCC-
PHAT), which is the established, textbook approach [23].
Once we have our time difference of arrival estimate, we
find the location in the box that would yield a time differ-
ence of arrival that is closest to our estimate.

Random Sampling: To evaluate if the learned mod-
els simply memorize the training data, we compared our
method against a random sampling procedure. This base-
line makes a prediction by randomly sampling an image
from the training set and using it as the prediction. We
repeated this step for all testing examples over 10 random
seeds.

Average Bounding Box: The average bounding box
baseline aims to measure to what extent the model learns

the dataset bias. Therefore, we extracted object bounding
boxes from all the training data through background sub-
traction and rectangle fitting to obtain the average center
location, box sizes and box orientation. This baseline uses
the average bounding box as the prediction for all the test
samples.

5.4. Reconstruction via Single Shape Training

In this experiment, we train separate models for each
shape of the object independently. Figure 6 shows The
Boombox is able to reconstruct both the position and ori-
entation of the shapes. The convolutional network obtains
the best performance for most shapes on both evaluation
metrics.

Our model performs significantly better than the analyt-
ical TDoA baseline. Our method outperforms TDoA of-
ten by significant margins, suggesting that our learning-
based model is learning robust acoustic features for local-
ization. Due to the realistic complexity of the audio signal,
the hand-crafted features are hard to reliably estimate. Our
model outperforms both the random sampling and average
bounding box baseline, indicating that our model learns the
natural correspondence between acoustic signals and visual
scene rather than memorizing the training data distribution.

These results highlight the relative difficulty at recon-
structing different shapes from sound. By comparing
the model performance across various shapes, the model
trained on cubes achieves the best performance while the
model trained on blocks performs slightly worse. The most
difficult shape is the stick.

5.5. Reconstruction via Multiple Shape Training

We next analyze how well The Boombox reconstructs its
contents when the shape is not known a priori. We train
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Figure 10. Visualization of Ablation Studies: We visualize the impact of different ablations on the model. A) By thresholding the
spectrograms, we remove the amplitude from the input. B) Since the differences between the signals from the microphones are important
for location, we experimented with flipping the microphones only at testing time. The model’s predictions show a corresponding flip as
well in the predicted images. C) We also experimented with shifting the relative time difference between the microphones, introducing an
artificial delay in the microphones only at testing time. A shift in time causes a shift in space in the model’s predictions. The corruptions
are consistent with a block falling in that location.

a single model with all the object shapes. The training
data for each shape are simply combined together so that
the training, validation and testing data are naturally well-
balanced with respect to the shapes. This setting is chal-
lenging because the model needs to learn audio features for
multiple shapes at once.

We show qualitative predictions for both RGB and depth
images in Figure 8. Moreover, since we are predicting a
depth image, our model is able to produce a 3D point cloud.
We visualize several examples from multiple viewpoints in
Figure 5. While analytical approaches are able to predict a
3D scalar position, we are able to predict a 3D point cloud.

Figure 7 shows the convolutional networks are able to
learn robust features even when shapes are unknown. When
the training data combines all shapes, the model should be
able to share features between shapes, thus improving per-
formance. To validate this, we compare performance on the
multi-shape versus the single-shape models. We use both
IoU and the localization model. Figure 9 shows that the
performance on the block and stick shapes are improved
by a large margin. We notice that the performance of the
cube drops due to the confusion between shapes. When the
cube confuses with the stick or the block, because of the
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Table 1

RGB output (IoU 
Score)

RGB output (IoU 
Score Error)

RGB output 
(Localization)

RGB output 
(Localization 
Error)

Depth output (IoU 
Score)

Depth output (IoU 
Score Error)

Original 0.229899333333333 0.01532714370361 0.86929 0.0207907316850562 0.145518 0.0336581804667652

No amplitude 0.111411 0.003960265437231870.745501333333333 0.0218479440248073 0.068995 0.0140442495112175
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Temporal shift 100 0.217426666666667 0.0173902832000453 0.871465 0.01869963365951320.133801333333333 0.0308732291655912

Temporal shift 300 0.171590333333333 0.0255842748730109 0.823479 0.02965312112296670.09645266666666670.0157413778127724

Temporal shift 500 0.132887666666667 0.02856062771446810.728956333333333 0.06198781147487340.06308633333333330.0116486305966743
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RGB output (IoU 
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RGB output (IoU 
Score, single, 
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Depth output (IoU 
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Figure 11. Quantitative performance under the ablation stud-
ies. We experiment with different perturbations to our input data
to understand the model decisions.

smaller surface area of these two shapes, the cube perfor-
mance slightly degrades.

5.6. Ablations

Since the model generalizes to unseen examples, our re-
sults suggest that the convolutional network are learning ro-
bust acoustic features. To better understand what features
the model has learned specifically, we perform several ab-



lation studies in Figure 10 and Figure 11.
Flip microphones. The microphones’ layout should

matter for our learned model to localize the objects. When
we flipped the microphone location, due to the symmetric
nature of the hardware setup, the predictions should also
be flipped accordingly. To study this, we flipped the cor-
responding audio input with a pair-wise strategy, shown in
Figure 10. Specifically, the audio input of the Mic1 and
Mic4 are flipped, and the audio input of the Mic2 and Mic3
are flipped. Our results in Figure 10B shows that our model
indeed produces a flipped scene. The performance in Figure
11 nearly drops to zero, suggesting that the model implicitly
learned the relative microphone locations to assist its final
prediction.

Remove amplitude. The relative amplitude between mi-
crophones is another signal that can indicate the position
of the sound source with respect to different microphones.
We removed the amplitude information by thresholding the
spectrograms, shown in Figure 10. We retrained the net-
work due to potential distribution shift. As expected, even
though the time and frequency information are preserved,
the model performs much worse (Figure 11), suggesting
that our model additionally learns to use amplitude for the
predictions.

Temporal shift. We are interested to see if our model
learns to capture features about the time difference of ar-
rival between microphones. If time difference of arrival in-
formation is helpful, when we shift the audio signal tempo-
rally, the model prediction should also shift spatially. We
experimented with various degrees of temporal shifts on
the original spectrograms. For example, shifting 500 sam-
ples corresponds to shifting about 0.01s (500 / 44,000). By
shifting the Mic1’s spectrogram forward and Mic4’s spec-
trogram backward with zero padding to maintain the same
amount of time, and preforming similar operation on Mic2
and Mic3 respectively, we should expect that the predicted
object position shifts towards the left-up direction. In Fig-
ure 10, we can clearly observe this trend as temporal shift
increases. Shifting the signal in time decreases the model’s
performance, demonstrating that the model has picked up
on the time difference of arrival.

5.7. Feature Visualization

We finally visualize the latent features in between our en-
coder and decoder network by projecting them into a plane
with t-SNE[36], shown in Figure 12. We colorize the points
according to their ground truth position and orientation. The
magnitude distance from the center of the image is repre-
sented by saturation, and the angle from the horizontal axis
is represented by hue. We find that there is often clear clus-
tering of the embeddings by their position and orientation,
showing that the model is robustly discriminating the loca-
tion of the impact from sound alone. Moreover, the gradual

Angle and  
Relative Position

Figure 12. t-SNE embeddings on the latent features from the en-
coder network. The color encoding follows a color wheel denoting
the angle and relative position to the center of the container. Our
model learns to encode the position and orientation of the objects
in its internal representations.

transitions between colors suggest the features are able to
smoothly interpolate spatially.

6. Conclusion
We have introduced The Boombox, a low-cost container

integrated with a convolutional network that uses acoustic
vibrations to reconstruct a 3D point cloud from image and
depth. Containers are ubiquitous, and this paper shows that
we can equip them with sound perception to localize and
reconstruct their contents inside.
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